Skip to content

Mechanical Properties of Ion Crystals

Potential

In a system of trapped ions, the ions experience the following potentials:

\[ \Phi = \Phi_{\mathrm{Coulomb}} + \Phi_{\mathrm{Trap}} \]
  • \(\Phi_{\mathrm{Coulomb}} \equiv\) Coulomb potential.
  • \(\Phi_{\mathrm{Trap}} \equiv\) Trapping potential.

The trapping potential can be generated with:

  • Combination of static (DC) and dynamic (RF) electric fields
  • Optical fields (e.g. optical cavity, optical tweezers)

Equilibrium Position

Calculating the equilibrium position of the ions corresponds to:

\[ \{\mathbf{r}_{i}^*\}_i^N = \mathrm{argmin}_{\{\mathbf{r}_{i}\}_i^N} \Phi\left(\{\mathbf{r}_{i}\}_i^N\right) \]
  • \(\{\mathbf{r}_{i}\}_i^N \equiv\) Position of the ions.
  • \(\{\mathbf{r}_{i}^*\}_i^N \equiv\) Equilibrium position of the ions.

Vibrational Modes

Calculating the vibrational (phonon) modes corresponds to:

\[ \begin{aligned} A &= \mathrm{Hess}[\Phi]\left(\{\mathbf{r}_{i}^*\}_i^N\right) \\ A &= B^* D B \end{aligned} \]
  • \(B \equiv\) Eigenvector matrix for the ion crystal.
  • \(D \equiv\) Diagonal matrix containing eigenvalues for the ion crystal.